▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Quality Assuring Multi-armed Bandit Mechanism for Crowdsourcing

Shweta Jain

Joint Work With: Satyanath Bhat, Sujit Gujar, Onno Zoeter and Prof. Y. Narahari

Dept. of CSA, IISc

August 3, 2015

NMI Workshop on Static and Dynamic Mechanism Design

Mechanism Design (MD)

Given: A set of utility maximizing (strategic) agents with private information and a social choice function that captures desirable (social) goals.

MD provides a game theoretic setting to explore if the given social choice function can be implemented as an equilibrium outcome of an induced game.

Example: Vickrey Auction¹

¹Y.Narahari: Game Theory and Mechanism Design. IISc Press and WSPC,2014

Multi-Armed Bandit (MAB) Problems

Given: A set of arms (agents) with unknown reward distributions.

MAB solution provides allocation policies so as to learn these distributions efficiently through intelligent exploration.

Example: UCB algorithm²

²Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 2002.

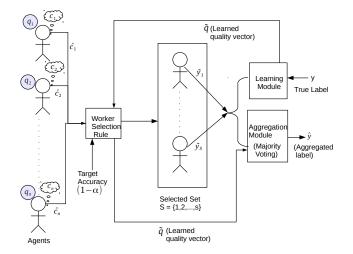
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multi-Armed Bandit Mechanisms

- Modern problems involve strategic agents with private information and unknown information.
- Examples:
 - Sponsored Search Auctions on the Web
 - Crowdsourcing
 - Online Auctions/Internet Markets
 - etc.
- In MAB mechanisms, we seek to learn certain parameters while eliciting private information truthfully.
- MAB and MD are extremely well investigated as individual problems. Interesting research questions arise when you try to meld them.

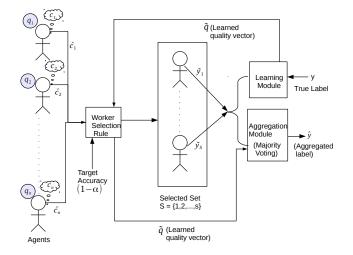
▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Our Setting (Assured Accuracy Bandit)



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Our Setting (Assured Accuracy Bandit)



$P(\hat{y} \neq y) < \alpha$ (Accuracy Constraint)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Optimization Problem (to be solved for each task)

- Suppose $q = (q_1, q_2, \dots, q_n)$ is a vector of qualities of workers
- Let $f_S(q)$ represent some measure of error probability
- $1 f_S(q)$ represents the accuracy with quality profile q
- For each task, t = 1, 2, ..., T, we wish to solve:

$$\min_{S^{t} \subseteq N} \sum_{i \in S^{t}} c_{i} \tag{1}$$
s.t. $f_{S^{t}}(q) < \alpha$ (Accuracy Constraint) (2)

We assume function $f_S(q)$ satisfies Monotonicity and Bounded Smoothness properties.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Monotonicity and Bounded Smoothness

 Monotonicity: f_S(q) is monotone if for all quality profiles q and q' such that ∀i ∈ N, q'_i ≤ q_i, we have,

$$f_{\mathcal{S}}(q') < \alpha \implies f_{\mathcal{S}}(q) < \alpha \ \forall \mathcal{S} \subseteq \mathcal{N}, \ \forall \alpha \in [0,1]$$

Monotonicity and Bounded Smoothness

 Monotonicity: f_S(q) is monotone if for all quality profiles q and q' such that ∀i ∈ N, q'_i ≤ q_i, we have,

$$f_{\mathcal{S}}(q') < \alpha \implies f_{\mathcal{S}}(q) < \alpha \ \forall \mathcal{S} \subseteq \mathcal{N}, \ \forall \alpha \in [0,1]$$

 Bounded smoothness: f_S(q) satisfies bounded smoothness property if there exists a monotone continuous function h such that if

$$\max_{i} |q_{i} - q'_{i}| \leq \delta \implies |f_{\mathcal{S}}(q) - f_{\mathcal{S}}(q')| \leq h(\delta) \quad \forall S \subseteq \mathcal{N},$$
$$\forall q, q' \in [0.5, 1]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Regret Formulation

- The regret of an algorithm in MAB mechanisms is the difference between the cost the algorithm incurs and cost incurred by an optimal algorithm with known qualities.
- We assume there is a penalty *L* for not satisfying the constraint.
- Thus, the regret is given as:

$$\mathcal{R}(\mathcal{A}) = (1-\mu)(\mathcal{C}(\mathcal{A}) - \mathcal{C}(S^*)) + \mu L$$

• Penalty term *L* is typically high.

Lower Bounds on Regret in AAB Framework

Definition (Δ -Separated Property:)

q is Δ -Separated with respect to α if $\exists \Delta > 0$ such that, $\Delta = \inf_{S \subseteq \mathcal{N}} |f_S(q) - \alpha|$ i.e. $\forall S, f_S(q) \notin [\alpha - \Delta, \alpha + \Delta].$

Theorem

Any algorithm in AAB framework and satisfies $E[n_S(A)] = o(T^a) \ \forall a > 0$ for any subset of worker S which is not optimal. Then, the following holds:

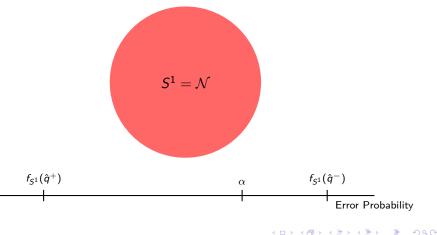
$$\liminf_{\mathcal{T}\to\infty}\mathbb{E}[\mathcal{R}(\mathcal{A})]\geq \frac{\ln\mathcal{T}}{(h^{-1}(\Delta))^2},$$

where, $\Delta = \inf_{S \subseteq \mathcal{N}} |f_S(q) - \alpha|$ and h(.) is the bounded smooth function.

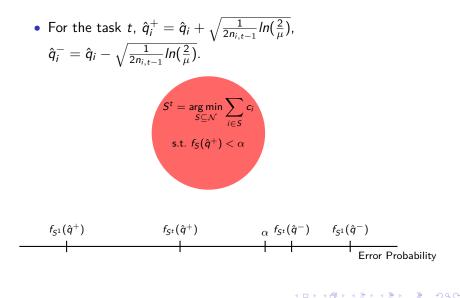
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

CCB-NS Algorithm

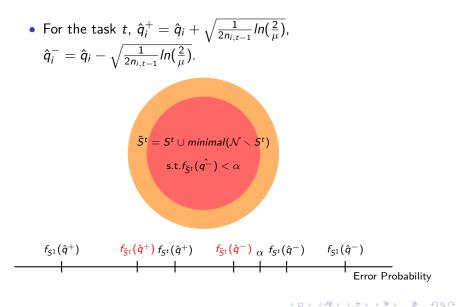
• Maintain upper confidence bound \hat{q}^+ and lower confidence bound \hat{q}^- on qualities. Initialize: $\hat{q}_i^+ = 1$ and $\hat{q}_i^- = 0.5$, forall *i*.



CCB-NS Algorithm



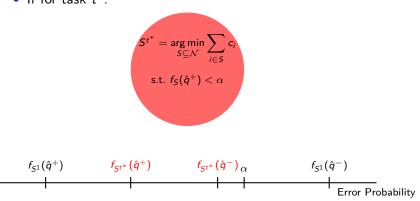
CCB-NS Algorithm



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CCB-NS Algorithm

• If for task t*:



• Return S^{t^*} for all the remaining tasks.

Properties of CCB-NS

 CCB-NS is an adaptive exploration separated learning algorithm

Theorem

CCB-NS satisfies the accuracy constraint with probability at least $(1-\mu)$ at every round t

Lemma

Set S^{t^*} returned by the CCB-NS algorithm is an optimal set with probability at least $1 - \mu$. That is, $C(S^{t^*}) = C(S^*)$ w.p. $(1 - \mu)$ Can be proved using monotonicity properties of error probability function

Properties of CCB-NS

• Let
$$\Delta = \min_{S \subseteq \mathcal{N}} |f_S(.) - \alpha|$$

(minimum difference between error tolerance α and error probability value of any set)

Theorem

The number of exploration rounds by the CCB-NS algorithm is bounded by $\frac{2n}{(h^{-1}(\Delta))^2} ln(\frac{2n}{\mu})$ with probability $(1 - \mu)$ where h is the bounded smoothness function

Strategic Version

- Costs c_i are private information of workers
- Valuations: $v_i = -c_i, \ \forall i \in \mathcal{N}$
- Utilities (Quasilinear): $\sum_{t=1}^{T} u_i(\tilde{q}(t), \hat{c}, c_i) = -c_i \sum_{t=1}^{T} \mathcal{A}_i^t(\tilde{q}(t), \hat{c}) + \mathcal{P}_i^t(\tilde{q}(t), \hat{c})$
- \mathcal{A}_{i}^{t} represents whether the t^{th} task is allocated to worker i
- \mathcal{P}_i^t is the monetary transfer to worker *i* for task *t*

Some Definitions

• Success Realization: A success realization is a matrix ρ s.t.,

$$\rho_{it} = \begin{cases} 1 \text{ If } \tilde{y}_i^t = y_t \\ 0 \text{ if } \tilde{y}_i^t \neq y_t \\ -1 \text{ if worker } i \text{ is not selected for task } t \end{cases}$$

• Ex-post Monotone Allocation: An allocation rule \mathcal{A} is ex-post monotone if $\forall \rho \in \{0, 1, -1\}^{n \times T}, \ \forall i \in \mathcal{N}, \ \forall \hat{c}_{-i} \in [0, 1]^{n-1}$,

$$\hat{c}_i \leq \hat{c}'_i \Rightarrow \mathcal{A}_i(\hat{c}_i, \hat{c}_{-i};
ho) \geq \mathcal{A}_i(\hat{c}'_i, \hat{c}_{-i};
ho)$$

 $\mathcal{A}_i(\hat{c}_i, \hat{c}_{-i})$ is the number of tasks assigned to worker *i* with bids \hat{c}_i and \hat{c}_{-i}

• Ex-post Truthful Mechanism: A mechanism $\mathcal{M} = (\mathcal{A}, \mathcal{P})$ is ex-post truthful if $\forall \rho \in \{0, 1, -1\}^{n \times T}, \quad \forall i \in \mathcal{N}, \quad \forall \hat{c}_{-i} \in [0, 1]^{n-1},$ $-c_i \mathcal{A}_i(c_i, \hat{c}_{-i}; \rho) + \mathcal{P}_i(c_i, \hat{c}_{-i}; \rho) \geq -c_i \mathcal{A}_i(\hat{c}_i, \hat{c}_{-i}; \rho) + \mathcal{P}_i(\hat{c}_i, \hat{c}_{-i}; \rho) \quad \forall \hat{c}_i \in [0, 1]^{n-1},$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

An Ex-post Monotone Allocation Algorithm, CCB-S

Input: Task error tolerance α , confidence level μ , tasks $\{1, 2, \dots, T\}$, workers \mathcal{N} , costs c Output: Worker selection set S^t , Label \hat{y}_t for task t Initialization: $\forall i, \hat{q}_i^+ = 1, \hat{q}_i^- = 0.5, k_{i,1} = 0, S^1 = \mathcal{N}, \text{ and } \hat{y}_1 = \mathsf{AGGREGATE}(\tilde{v}(S^1))$ Observe true label v1 $\forall i \in \mathcal{N}, n_{i,1} = 1, k_{i,1} = 1 \text{ if } \tilde{y}_i = y_1 \text{ and } \hat{q}_i = k_{i,1}/n_{i,1}$ for t = 2 to T Let $S^t = \underset{S \subseteq \mathcal{N}}{\operatorname{arg\,min}} \sum_{i \in c} c_i \text{ s.t. } f_S(\hat{q}^+) < \alpha$ % Explore if $f_{S^t}(\hat{q}^-) > \alpha$ then $S^t = \mathcal{N}$ $\hat{v}_t = AGGREGATE(\tilde{v}(S^t))$ Observe true label y_t ; $\forall i \in S^t$: $n_{i,t} = n_{i,t} + 1$, $k_{i,t} = k_{i,t} + 1$ if $\tilde{y}_i = y_t$, $\hat{q}_i = k_{i,t}/n_{i,t}$, $\hat{q}_{i}^{+} = \hat{q}_{i} + \sqrt{\frac{1}{2n_{i,t}}\ln(\frac{2}{\mu})}, \ \hat{q}_{i}^{-} = \hat{q}_{i} - \sqrt{\frac{1}{2n_{i,t}}\ln(\frac{2}{\mu})}$ else $t^* = t$, $\hat{v}_t = \text{AGGREGATE}(\tilde{v}(S^t))$ Break %Exploit for $t = t^* + 1$ to T $S^{t} = S^{t^{*}}, \hat{v}_{t} = \text{AGGREGATE}(\tilde{v}(S^{t}))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties of CCB-S

Theorem

Number of exploration rounds by the CCB-S algorithm is bounded by $\frac{2}{(h^{-1}(\Delta))^2} ln(\frac{2n}{\mu})$ with probability $(1 - \mu)$

Theorem

Allocation rule given by the CCB-S algorithm (\mathcal{A}^{CCB-S}) is ex-post monotone and thus produces an ex-post incentive compatible and ex-post individual rational mechanism

Properties of CCB-S

Theorem

Number of exploration rounds by the CCB-S algorithm is bounded by $\frac{2}{(h^{-1}(\Delta))^2} ln(\frac{2n}{\mu})$ with probability $(1 - \mu)$

Theorem

Allocation rule given by the CCB-S algorithm (\mathcal{A}^{CCB-S}) is ex-post monotone and thus produces an ex-post incentive compatible and ex-post individual rational mechanism

Note: CCB-S algorithm only provides an allocation rule. For the payment rule we use transformation given by Babaioff et. al. as a black box.

Properties of CCB-S (continued)

Theorem

Allocation rule given by the CCB-S algorithm \mathcal{A}^{CCB-S} is ex-post monotone.

Proof:

We need to prove:

$$\begin{aligned} \mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i}; \rho) &\leq \mathcal{A}_{i}^{t}(c_{i}, c_{-i}; \rho) \\ \forall \rho \forall i \in \mathcal{N}, \ \forall t \in \{1, 2, \dots, T\}, \ \forall \hat{c}_{i} \geq c_{i} \end{aligned}$$

For notation convenience, assume ρ is fixed and denote $\mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i}; \rho)$ as $\mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i})$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

• Prove by induction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Prove by induction:
- $\mathcal{A}_j^1(\hat{c}_i, c_{-i}) = \mathcal{A}_j^1(c_i, c_{-i}) = 1 \ \forall j \text{ (since task 1 is given to all workers)}$

- Prove by induction:
- $\mathcal{A}_j^1(\hat{c}_i, c_{-i}) = \mathcal{A}_j^1(c_i, c_{-i}) = 1 \ \forall j \text{ (since task 1 is given to all workers)}$
- Let t be the largest time step such that, $\forall j$, $\mathcal{A}_{j}^{t-1}(\hat{c}_{i}, c_{-i}) = \mathcal{A}_{j}^{t-1}(c_{i}, c_{-i}) = t - 1$ (Exploration round with \hat{c}_{i} and c_{i})

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Prove by induction:
- $\mathcal{A}_j^1(\hat{c}_i, c_{-i}) = \mathcal{A}_j^1(c_i, c_{-i}) = 1 \ \forall j \text{ (since task 1 is given to all workers)}$
- Let t be the largest time step such that, $\forall j$, $\mathcal{A}_{j}^{t-1}(\hat{c}_{i}, c_{-i}) = \mathcal{A}_{j}^{t-1}(c_{i}, c_{-i}) = t - 1$ (Exploration round with \hat{c}_{i} and c_{i})
- And $\exists i$ such that,

$$\mathcal{A}_i^t(\hat{c}_i, c_{-i}) \neq \mathcal{A}_i^t(c_i, c_{-i})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof Continued

- Prove by induction:
- $\mathcal{A}_j^1(\hat{c}_i, c_{-i}) = \mathcal{A}_j^1(c_i, c_{-i}) = 1 \ \forall j \text{ (since task 1 is given to all workers)}$
- Let t be the largest time step such that, $\forall j$, $\mathcal{A}_{j}^{t-1}(\hat{c}_{i}, c_{-i}) = \mathcal{A}_{j}^{t-1}(c_{i}, c_{-i}) = t - 1$ (Exploration round with \hat{c}_{i} and c_{i})
- And ∃*i* such that,

$$\mathcal{A}_i^t(\hat{c}_i, c_{-i}) \neq \mathcal{A}_i^t(c_i, c_{-i})$$

• Since the costs and quality estimates are the same for all the workers till tasks *t*, this can happen only when in one case worker *i* is selected, while in the other case worker *i* is not selected

- Prove by induction:
- $\mathcal{A}_j^1(\hat{c}_i, c_{-i}) = \mathcal{A}_j^1(c_i, c_{-i}) = 1 \ \forall j \text{ (since task 1 is given to all workers)}$
- Let t be the largest time step such that, $\forall j$, $\mathcal{A}_{j}^{t-1}(\hat{c}_{i}, c_{-i}) = \mathcal{A}_{j}^{t-1}(c_{i}, c_{-i}) = t - 1$ (Exploration round with \hat{c}_{i} and c_{i})
- And $\exists i$ such that,

$$\mathcal{A}_i^t(\hat{c}_i, c_{-i}) \neq \mathcal{A}_i^t(c_i, c_{-i})$$

- Since the costs and quality estimates are the same for all the workers till tasks *t*, this can happen only when in one case worker *i* is selected, while in the other case worker *i* is not selected
- Let the two sets selected with c_i and \hat{c}_i be $S(c_i)$ and $S(\hat{c}_i)$ respectively

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof Continued

• Since the optimization problem involves cost minimization and quality updates are the same, we have,

$$\mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i}) = t - 1$$
 which implies $i \notin S(\hat{c}_{i})$
 $\mathcal{A}_{i}^{t}(c_{i}, c_{-i}) = t$ which implies $i \in S(c_{i})$

Proof Continued

 Since the optimization problem involves cost minimization and quality updates are the same, we have,

$$\mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i}) = t - 1$$
 which implies $i \notin S(\hat{c}_{i})$
 $\mathcal{A}_{i}^{t}(c_{i}, c_{-i}) = t$ which implies $i \in S(c_{i})$

Since i ∉ S(ĉ_i), selected set S(ĉ_i) satisfies the lower confidence bound too (exploitation round with bid ĉ_i)

A D N A 目 N A E N A E N A B N A C N

Proof Continued

 Since the optimization problem involves cost minimization and quality updates are the same, we have,

$$\mathcal{A}_{i}^{t}(\hat{c}_{i}, c_{-i}) = t - 1$$
 which implies $i \notin S(\hat{c}_{i})$
 $\mathcal{A}_{i}^{t}(c_{i}, c_{-i}) = t$ which implies $i \in S(c_{i})$

- Since i ∉ S(ĉ_i), selected set S(ĉ_i) satisfies the lower confidence bound too (exploitation round with bid ĉ_i)
- Thus for the rest of the tasks, only $S(\hat{c}_i)$ is selected and thus we have, $\mathcal{A}_i^t(\hat{c}_i, c_{-i}) \leq \mathcal{A}_i^t(c_i, c_{-i})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Minimum Knapsack Problem

• One example of optimization problem in assured accuracy framework:

$$\min_{S \in \mathcal{N}} C(S)$$

s.t. $\sum_{i \in S} (2q_i - 1) \ge 6 \ln \left(\frac{1}{\alpha}\right)$

- This can be formulated as minimum knapsack problem
- There exists a greedy algorithm to solve the above problem in polynomial time
- We have also extended the greedy algorithm to the monotone learning algorithm when the qualities are not known and costs are strategic
- The algorithm runs in polynomial time and does not select all the workers in the exploration phase

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Directions for Future Work

- Non exploration-separated algorithms satisfying desirable mechanism properties with lower regret for the general optimization problem
- Extension to more general task settings
- Working with soft constraint formulation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank You